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Abstract— Biomolecular systems can often be modeled by
chemical reaction networks with unknown parameters. In many
cases, the available data is constituted of samples from the
stationary distribution, wherein each sample is given by a
cell in a population. In this work, we develop a framework
to assess identifiability of parameters in such a situation.
Working with the Linear Noise Approximation (LNA) we
give an algebraic formulation of identifiability and use it to
certify identifiability with Hilbert’s Nullstellensatz. We include
applications to particular biomolecular systems, focusing on the
identifiability of a sequestration-based motif and of a feedback
arrangement based on it.

I. INTRODUCTION

Identifiability is the property of a system that guaran-
tees that the parameters can be determined from measured
data. The strongest form of identifiability is a priori global
structural identifiability, which ensures that no matter the
true values of the parameters, it is possible to estimate
them arbitrarily accurately with infinitely many data [5],
[19]. For systems modeled by ordinary differential equations
(ODEs) with the measured data being the entire trajectory
of the output, global a priori identifiability can be assessed
via a variety of methods such as those based on Ritt’s
algorithm [3], [6], [19], or observability analysis whereby the
parameters are treated as additional states, which are constant
with respect to time [9], [25], [26], [30].

The systems we consider in this paper are those of
biomolecular reactions inside the cell. In this case, each cell
contains a copy of the chemical reaction network, and thus,
in a population of cells, the average across the population at
a particular instant in time is the average across many sample
paths of the underlying Markov process. If the measurement
technique provides data that is the average across the popula-
tion of cells as a function of time, such as with a plate reader,
the chemical reaction network can be modeled by ODEs
describing the time evolution of the mean concentrations
of a set of molecular species. In this case, identifiability
analysis can be carried out using the methods discussed
above. However, alternative measurement techniques that do
not average over the population exist, such as with flow
cytometry. Many of these techniques do not track individual
cells between measurement times, but instead measure the
population distribution as a function of time. In this case,
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it is not known in general how much information about the
parameters is contained in the data. However, it is known
that in certain cases the population distribution gives more
information about the parameters than just the means [18],
[21], [22], [27]. In general, assessing identifiability in this
setting remains an open problem, with Cinquemani giving
a method for determining local identifiability of chemical
reaction networks where all the reactions have propensities
that are affine in the state [10].

An even more restricted variation on the above setting is
the case in which instead of measuring samples from the
population distribution as a function of time, only samples
from the stationary distribution are available. Such a case is
of practical importance, since it is often easier to design
an experiment where a population of cells is allowed to
grow to steady state, at which point the concentrations of
the molecular species within each of the cells is measured,
such as with single-cell RNA-sequencing [20]. Algorithms
for identifying the parameters from such data have been
proposed [4], [13], [23], but the question of identifiability has
not been addressed, and therefore the proposed methods are
not guaranteed to give accurate estimates of the parameters.
In this work, we consider the identifiability of chemical reac-
tion networks from stationary distributions. We specifically
model chemical reaction networks using the Linear Noise
Approximation (LNA) and we algebraically characterize
global identifiability from the stationary distribution. Using
this algebraic characterization we compute certificates of
identifiability based on Hilbert’s Nullstellensatz.

This paper is organized as follows. In Section II, we
describe the LNA and Hilbert’s Nullstellensatz. In Section
III, we derive our algebraic characterization of identifiability,
and in Section IV we apply our method to certify global
identifiability of several chemical reaction networks from
stationary distributions.

II. MATHEMATICAL BACKGROUND
A. The linear noise approximation

A chemical reaction network is a system of one or more
distinct chemical species, which interact through reactions,
events that instantaneously change the number of molecules
of each species. The LNA model of a chemical reaction
network makes the approximation that X = Ωx +

√
Ωξ,

where X is the vector of molecular counts of the species,
Ω is the volume in which the reactions occur, x is the
vector of mean concentrations of the species, and ξ is the
stochastic fluctuation of the concentrations about x. The
LNA is accurate when the molecular counts and the volume



are both large [17], [29]. A complete derivation of the LNA
can be found in [29].

A chemical reaction network with n species has a state
X =

[
X1 X2 · · ·Xn

]T
, where Xj is the molecular

counts of species j. Each of the r reactions is of the form
sTriX

ki−→ sTpiX , where sri is the vector of molecular counts
of each species consumed by reaction i, spi is the vector of
molecular counts of each species created when reaction i
occurs, and ki is the reaction rate constant of reaction i. We
define

f(x;k) = Sq(x;k) (1)

where
S =

[
s1 s2 · · · sr

]
,

with si = spi − sri. Additionally, k =
[
k1 · · · kr

]
and

q(x;k) =
[
q1(x; k1) q2(x; k2) · · · qr(x; kr)

]T
. Here

qi(x; ki) = ki
∏n
j=1 x

sjri
j is the macroscopic propensity of

reaction i, where sjri denotes the jth element of sri. The
LNA model is then

ẋ(t) =f(x(t);k), x0(0) = x0, (2a)

ξ̇(t) =
∂f

∂x
ξ(t) + Γ(x(t);k)w(t), ξ(0) = ξ0, (2b)

where w(t) is white, zero mean Gaussian noise with identity
covariance, and

Γ(x;k) = S diag
(√

q(x;k)
)
. (3)

We assume that (2a) has a unique, globally asymptotically
stable equilibrium point, x∗, in which case the stationary dis-
tribution of X(t)/Ω under the LNA is N (x∗(k), 1

ΩP
∗(k)),

where x∗ and P ∗ are the solution to

0 =f(x;k), (4a)

0 =
∂f

∂x
P + P

∂f

∂x

T

− Γ(x;k)Γ(x;k)T . (4b)

In the sequel, we attach to a chemical reaction network a
function R that maps reaction rate constants to the stationary
distribution given by (4), i.e.,R : Rr>0 → Rn×Sn×n, defined
by R(k) =

(
x∗(k), 1

ΩP
∗(k
)
). Here Sn×n is the space of

symmetric n× n real matrices.
To illustrate the theory we use the following running

example throughout this paper.
Example 1 (Illustrative Example 1): Consider a chemical

reaction network with one species (n = 1) and three
reactions (r = 3) given by

∅
k1

k2

X1
k3

2X1, (5)

where each arrow represents one reaction and reaction i is
labeled by ki, its reaction rate constant. In this case, (1) takes
the form

d

dt
x1 = f(x;k) = k1 − k2x1 − k3x

2
1. (6)

For all k > 0 there is a unique and globally asymptotically
stable equilibrium point in R≥0. Therefore, the LNA gives a

unique stationary distribution for all k > 0. For this system,
q(x;k) =

[
k1 k2x1 k3x

2
1

]T
and S =

[
1 −1 −1

]
.

Therefore, from (3) we obtain that

Γ(x;k)Γ(x;k)T = k1 + k2x1 + k3x
2
1. (7)

B. Nullstellensatz

In this section, we give an overview of the algebraic geom-
etry tool we use in this work, Hilbert’s Nullstellensatz [11].
Hilbert’s Nullstellensatz provides a computational method to
determine if there are any solutions to a set of polynomial
equations. Given z, an n′-dimensional vector of variables, we
let Q[z] denote the set of all polynomials in z with rational
coefficients. For p ∈ Q[z], we let p(z′) denote p evaluated
at z′ ∈ Cn′ . Given P = {p1, p2, . . . , pm} ⊆ Q[z], the ideal
〈P〉 ⊆ Q[z] generated by P is defined as

〈P〉 = {g ∈ Q[z]|g =

m∑
i=1

λipi, p1, . . . , pm ∈ P,

λ1, λ2, . . . , λm ∈ Q[z]}.

We now give a statement of Hilbert’s Nullstellensatz.
Theorem 2.1 (Ch. 4 of [11]): Let P = {p1, p2, . . . , pm}

⊆ Q[z]. Then

∅ =
{
z ∈ Cn

′
∣∣∣0 = p1(x), 0 = p2(x), . . . , 0 = pm(x)

}
if and only if −1 ∈ 〈P〉.
Given a set of polynomials, P , there are multiple ways to
check if −1 ∈ 〈P〉. For example, for a fixed maximum
degree of the λi’s, checking if there exist λi’s such that
−1 =

∑m
i=1 λipi is equivalent to solving a system of linear

equations. However, an alternative approach, which we use
in the examples section of this paper, is based on reduced
Gröbner bases [28], a special set of polynomials associated
with 〈P〉, which can be computed algorithmically and reveal
whether or not −1 ∈ 〈P〉. For completeness, we give a brief
summary of the theory of Gröbner bases in Appendix A.

III. MAIN RESULT

We now present the main result of this work, which
is an algebraic characterization of global indentifiability of
LNA models of chemical reaction networks from stationary
distributions. The system identification problem we study
is the case where a large number of samples from the
stationary distribution of the LNA model of a chemical
reaction network are measured, and the goal is to estimate
the reaction rate constants k. We investigate the simplest
case, where infinitely many samples are available, so that
the stationary distribution can be reconstructed exactly, and
the volume Ω is a known constant. In this case x∗ and 1

ΩP
∗

can be exactly determined from the data. In this case the
natural notion of global identifiability for chemical reaction
networks from stationary distributions is as follows.

Definition 3.1: A chemical reaction network R(k) is sta-
tionary globally identifiable over K ⊆ Rr>0 if for any
k1,k2 ∈ K such that R(k1) = R(k2), there exists a ∈ R
such that k2 = ak1.



Our definition of identifiability allows for the possibility that
all k ∈ spank′ result in the same stationary distribution. In
fact, for any chemical reaction network R, it is true that
R(k) = R(αk) for all k ∈ K and α > 0. Therefore, when
only the stationary distribution is measured we can only hope
to identify k up to a scaling.

To begin, we show that (4) is a linear equation for k, as
formalized in the following proposition.

Proposition 3.1: Given a chemical reaction network, there
exists a matrix A(x, P ) ∈ R

n2+n
2 ×r such that (4) can be

written in the form

0 = A(x, P )k, (8)

where the entries of A(x, P ) are polynomials in the entries
of x and in the entries of P on and above the diagonal.

Proof: To begin, we write (4a) as

f(x;k) =

r∑
i=1

kisi

n∏
j=1

x
sjri
j

and (4b) as 0 = ∂f
∂xP + P ∂f

∂x

T
− S diag q(x;k)ST , where

we have used (3) and the fact that q(x;k) ≥ 0 for all k ≥ 0.
Since ∂f

∂x and q(x;k) are linear in k, the right hand side of
(4) is linear in k and in P . To complete the proof, observe
that (4) has n + n2 equations for x ∈ Rn≥0 and P ∈ Sn×n.
Since P is symmetric, there are only n2+n

2 unique equations

in (4b). Therefore we can form A(x, P ) ∈ R
n2+n

2 ×r by
removing the repeated equations.
Since P is symmetric, we think of A(x, P ) as a function
of x and of the n2+n

2 entries of P that are on or above the
diagonal.

Example 1 (Illustrative example 1 continued): We want
to determine if R1, given by (5), is stationary globally
identifiable over R3

>0. For this chemical reaction network,
writing out (4) explicitly yields

0 = k1 − k2x1 − k3x
2
1, (9a)

0 = 2(−k2 − 2k3x1)p11 + k1 + k2x1 + k3x
2
1, (9b)

where we have used that x = x1 and P = p11 and used (6)
and (7). We therefore have that for R1

A(x, P ) =

[
1 −x1 −x2

1

1 x1 − 2p11 x2
1 − 4p11x1

]
.

Proving that a given system is stationary globally iden-
tifiable requires proving that (8) has only one subspace of
solutions in k for all (x, P ) such that there exists k ∈ K
satisfying (x, P ) = R(k). To do this we propose a method
based on algebraic geometry. To this end we define the set

V =
{

(x, P,k) ∈ (Rn,Sn×n,Rr>0)
∣∣

0 = A(x, P )k, rank(A(x, P )) < r − 1} . (10)

Using V we now give an algebraic condition for a chemical
reaction network to be stationary globally identifiable.

Theorem 3.1: A chemical reaction network R is station-
ary globally identifiable over Rr>0 if and only if V = ∅.

Proof: First, suppose R is not stationary globally iden-
tifiable over Rr>0. Then there exists k1,k2 > 0, with k2 and
k1 linearly independent, such that 0 = A(x, P )k1 and 0 =
A(x, P )k2. This immediately implies that rankA(x, P ) <
r − 1, and therefore (x, P,k1) ∈ V . Now suppose that
there exists (x′, P ′,k′) ∈ V . By the definition of V ,
rankA(x′, P ′) < r−1, and so there exists a W , a subspace
of dimension 2 containing k such that 0 = A(x′, P ′)W .
It then follows from the fact that Rr>0 is open that there
exists k′′ > 0, linearly independent from k′, such that
0 = A(x, P )k′′ and therefore R is not stationary globally
identifiable.
Given a chemical reaction network R, from Theorem 3.1
we have a set defined in terms of polynomial equations
and inequalities, which if empty proves that R is globally
stationary identifiable. To transform this condition into one
that uses a set defined with only polynomial equalities, we
require the following result, which is a consequence of the
standard determinant characterization of rank, which we now
state.

Lemma 3.1: (Determinant rank characterization) Let A ∈
Rn×m. Then, rankA = r′ if and only if every r′+1×r′+1
minor of A is zero, and there exists an r′ × r′ minor of A
that is non-zero.

Proof: See [14, Section 0.4].
We state and prove a consequence of Lemma 3.1, which we
will require for our main result.

Lemma 3.2: Let A ∈ Rn×m. Then, rankA < r′ if and
only if every r′ × r′ minor of A is zero.

Proof: First, we show that if rankA < r′, then every
r′ × r′ minor of A is zero. Let rankA = r′′ < r′. Then,
by Lemma 3.1, every r′′ + 1 × r′′ + 1 minor of A is zero.
Furthermore, by the Laplace expansion for the determinant
[14], for all r′′′ ≥ r′′+1, every r′′′×r′′′ minor of A is zero.
Specifically, since r′ ≥ r′′ + 1, every r′ × r′ minor of A is
zero. Second, we show that if rankA ≥ r′, then there exists
a nonzero r′ × r′ minor of A. Let rankA = r′′ ≥ r′. By
Lemma 3.1 there exists an r′′ × r′′ nonzero minor of A. It
follows from the Laplace expansion for the determinant [14]
that for all r′′′ ≤ r′′ there exists an r′′′× r′′′ nonzero minor
of A. Specifically, there exists an r′ × r′ nonzero minor of
A.
We next state the main result of this work, a sufficient
condition for stationary global identifiability that is based
on a set defined by only polynomial equalities.

Theorem 3.2: Consider a chemical reaction network R. If
the ideal

I =
〈
y2
jkj − 1 ∀j ∈ {1, . . . , r}, Aq(x, P )k ∀q ∈ {1, . . . r},

M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m}

〉
(11)

contains −1, then R is stationary globally identifiable
over Rr>0. Here, Aq(x, P ) is the qth row of A(x, P ) and
M

(r−1)×(r−1)
i (x, P ) is all of the size (r − 1) × (r − 1)

minors of A(x, P ), indexed by i = 1, . . . ,m.



Proof: Let

V̄ =
{

(x, P,k,y) ∈ (Rn,Sn×n,Rr,Rr)
∣∣

0 = A(x, P )k,

0 = M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m},

0 = y2
jkj − 1 ∀j ∈ {1, . . . , r}

}
.

Recall V defined in (10). We first show that V = ∅ if and
only if V̄ = ∅. First, suppose V 6= ∅. Then, there exists
(x, P,k) ∈ V . It follows that 0 = A(x, P )k. Let y be
such that yj =

√
1/kj . Therefore, for all j, y2

jkj − 1 =
0. By Lemma 3.2, rank(A(x, P )) < r − 1 guarantees that
0 = M

(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m, and hence

(x, P,k,y) ∈ V̄ . Now suppose that V̄ 6= ∅. Then, there
exists (x, P,k,y) ∈ V̄ . It follows that 0 = A(x, P )k. Then,
we have that 0 = M

(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m,

and hence by Lemma 3.2 it is true that rankA(x, P ) < r−1.
Therefore (x, P,k) ∈ V , and hence V 6= ∅.

To complete the proof, observe that V̄ is the variety of I
defined by (11). If −1 ∈ I then by Theorem 2.1, we have
that

V̄C =
{

(x, P,k,y) ∈ (Cn,Cn×n,Cr,Rr)
∣∣

0 = A(x, P )k,

0 = M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m},

0 = y2
jkj − 1 ∀j ∈ {1, . . . , r}

}
= ∅.

This immediately implies that V̄ = ∅, and hence by our
above argument that V = ∅. Therefore by Theorem 3.1 R
is stationary globally identifiable over Rr>0.

IV. EXAMPLES

In this section, we first present four applications of the tool
developed in Section III to certify that a chemical reaction
network is stationary globally identifiable.

Example 2 (Mutual degradation): Consider a chemical
reaction network R2 consisting of two species X1 and X2

mutually degrading as shown in reactions (12):

∅

k
2

k
1

X1

k
3

k
4

X2

k 5

X1 + X2

(12)

X1 and X2 are produced and decay with reaction rate con-
stants k1 through k4, and additionally X1 and X2 mutually

degrade through the reaction X1 + X2
k5 ∅. Such

a chemical reaction network is an example of a so called
antithetic motif, and can be used to construct approximate
biomolecular realizations of integral controllers [2], [8], [15],
[24].

However, the control implemented by the antithetic motif
will only have a true integral control term when k2 =
k4 = 0. When k2 > 0 and k4 > 0, a closed loop system
constructed using X1 and X2 as the controller species will

have a nonzero steady state error, because in that case
the antithetic motif does not encode a perfect integrator,
it instead encodes a “leaky” integrator [24]. Specifically, in
[24], it was shown that almost perfect adaptation could be
reached as the production rates (parameterized by k1 and
k3) and the mutual degradation rate (parameterized by k5)
all become much faster than the decay rates (parameterized
by k2 and k4). This can be used to determine a heuristic to
compare two possible biological implementations of R2 that
have parameters kA and kB , respectively. Specifically, we
compute the dimensionless quantities

σ1

(
kA,kB

)
=

kB2 k
A
5

kB5 k
A
2
, σ2

(
kA,kB

)
=

kB2 k
A
1

kB1 k
A
2
,

σ3

(
kA,kB

)
=

kB4 k
A
5

kB5 k
A
4
, σ4

(
kA,kB

)
=

kB4 k
A
3

kB3 k
A
4
.

If σi(kA,kB) << 1 for i ∈ {1, 2, 3, 4}, then kB is expected
to perform better than kA.

Here, we study whether a simple experiment that measures
only the stationary distribution of (x1, x2) with parameters
kA and kB can be used to estimate σi

(
kA,kB

)
, for i ∈

{1, 2, 3, 4}. Since stationary global identifiability of R2 is
sufficient to make k identifiable up to a scaling factor, and
since for all αA, αB > 0 we have σi

(
αAkA, αBkB

)
=

σi
(
kA,kB

)
for i ∈ {1, 2, 3, 4}, it is sufficient to check for

global identifiability to address this question.
For R2 we have that

f(x;k) =

[
k1 − k2x1 − k5x1x2

k3 − k4x2 − k5x1x2

]
and

Γ(x;k)Γ(x;k)T =[
k1 + k2x1 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]
.

Therefore, writing (2) in the form (8) yields

A(x, P ) =

1 −x1 0 0 −x1x2

0 0 1 −x2 −x1x2

1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2

0 −p12 0 −p12
x1x2 − p12x1 − p12x2

− p22x1 − p11x2

0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2


. (13)

The system ẋ = f(x;k) has a unique, globally asymptot-
ically stable, equilibrium point in R2

≥0 for all k > 0 [7].
To prove that R2 is stationary globally identifiable in the
sense of Definition 3.1 we apply Theorem 3.2. In order to
use Theorem 3.2, we need to show that −1 ∈ I, where
I is the ideal defined in (11) with A in (13). To do this,
we compute the reduced Gröbner basis G of I using the
gbasis command in Macaulay2 [12] and find that G = {1}.
Therefore, by Theorem A.1, −1 is in the ideal (11). Hence,
by Theorem 3.2, R2 is stationary globally identifiable over
R5
>0.



Example 3 (A nonidentifiable system): We now consider
the chemical reaction network R3:

∅

k
2

k
1

X1 k
3

k
4

X2

k5

X1 + X2

k
6

Chemical reaction network R3 is the same as R2, except
for the addition of enzymatic production of X1 by X2 with
reaction rate constant k6. ForR3, we have from the definition
of f(x;k) in (1) that

f(x;k) =

[
k1 − k2x1 − k5x1x2 + k6x2

k3 − k4x2 − k5x1x2

]
(14)

and from (3) that

Γ(x;k)Γ(x;k)T =[
k1 + k2x1 + k6x2 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]
.

Therefore we have that A(x, P ) in (8) is given by

A(x, P )k =
[
A1 A2

]
(15)

where

A1 =


1 −x1 0 0
0 0 1 −x2

1 x1 − 2p11 0 0
0 −p12 0 −p12
0 0 1 x2 − 2p22


and

A2 =


−x1x2 x2

−x1x2 0
x1x2 − 2p12x1 − 2p11x2 2p12 + x2

x1x2 − p12x1 − p12x2 − p22x1 − p11x2 p22
x1x2 − 2p22x1 − 2p12x2 0

 .

It can be shown that for all k ∈ R6
>0, (14) has a unique

equilibrium point in R2
≥0, and that equilibrium point is

globally asymptotically stable, see Appendix B. We now
show thatR3 is not stationary globally identifiable over R6

>0.
First, we note that the lack of identifiability is non-trivial,
since in this case A(x, P ) ∈ R5×6, and so in principal
A(x, P ) could have rank r − 1 = 5 for all (x, P ) such
that there exists k > 0 satisfying A(x, P )k, which would
imply that R3 is stationary globally identifiable. When k =[
10 1 10 1 1 10

]T
, the solution to 0 = A(x, P )k

is x∗ =
[
10 10/11

]T
and P ∗ = diag

[
10 10/11

]
.

Evaluating the rank of A in (15) with these values of x
and P gives rankA = 4 < r − 1 and so by Theorem 3.1,
R3 is not stationary globally identifiable over R6

>0.
Example 4 (Antithetic feedback loop): We now consider

chemical reaction network R4, which implements an anti-
thetic feedback loop [2], [8], [15]. The chemical reaction
network R4, which is a model of the system shown in Figure
1(a)(ii) of [24], is given by the reactions shown in (16):

∅
k1

X1

k2

X2
k
5

X1 + X2
k3

X2 + X3

X3
k4

X1 + X3
k7

k6
(16)

The controller is implemented by the two species X1 and
X2, which are each produced at rates k1 and k2, and mu-
tually degrade with reaction rate constant k5. The regulated
species X3 is enzymatically produced from X2 with reaction
rate constant k3, and the loop is closed by the enzymatic
production of X1 from X3 with reaction rate constant k4.
The production and decay rate constants of X3 are k7 and
k6, respectively. The equilibrium value of x3 is insensitive
to k3, k6 and k7 [8]. We investigate the identifiability of R4.
Due to space constraints we do not explicitly give A(x, P )
for R4. However, A(x, P ) is constructed analogously to the
cases of R2 and R3 using (1) and (3). It can be shown
that ẋ = f(x;k) has a unique, locally asymptotically stable
equilibrium point in R3

≥0 [24]. The global stability of this
system is an open question [1], here we simply use the
solution to (4) as a model for the stationary distribution of
R4. We use Theorem 3.2 to prove that R4 is stationary
globally identifiable by showing that −1 ∈ I, where I
is the ideal defined in (11). To do this we compute the
reduced Gröbner basis G of I using the gbasis command
in Macaulay2 [12] and find that G = {1}. Therefore, by
Theorem A.1, −1 is in the ideal (11). Hence, by Theorem
3.2, R4 is stationary globally identifiable over R7

>0.

V. CONCLUSION

In this work, we study identifiability of chemical reaction
networks from stationary distributions. For LNA models,
we characterize identifiability by an algebraic condition
and check this condition algorithmically by computing the
reduced Gröbner basis of a particular ideal. We demon-
strate our proposed method by applying it to three different
biomolecular systems of practical interest. Our results can
be used to determine whether a simple experimental setup
wherein measurements are taken from a population of cells
grown to steady state is a viable way to estimate the parame-
ters of a biomolecular circuit. Future work includes extending
these results to chemical reaction networks modeled by the
chemical master equation instead of the LNA, as well as
to situations where measurements of the distribution are
available at a sequence of times, and/or measurements are
only available for a subset of species.
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APPENDIX

A. Gröbner Bases

We define a monomial as a polynomial p ∈ Q[z] that
can be written as p =

∏N
i=1 z

αi
i for some N ≥ 0 and

α1, α2, . . . , αN ∈ N. We let “≺” be a total ordering on the
set of monomials in Q[z] that additionally satisfies

(i) 1 ≺ p for any nonconstant monomial p ∈ Q[z] and
(ii)

∏N
i=1 x

αi
i ≺

∏N
i=1 z

βi

i implies that∏N
i=1 z

αi+γi
i ≺

∏N
i=1 z

βi+γi
i for all

α1, . . . , αN , β1, . . . , βN , γ1, . . . , γN ∈ N



Such a total ordering ≺ is called a term order. Let p ∈ Q[z].
Then, we denote by in≺(p) the largest monomial with respect
to ≺ that appears in p. Suppose that I = 〈P〉. We then have
that G is a Gröbner basis of I if it is a finite subset of I that
satisfies 〈in≺(p)|p ∈ I〉 = 〈in≺(g)|g ∈ G〉. G is a reduced
Gröbner basis of I if additionally

(i) the coefficient of the largest monomial in g with
respect to ≺ is 1 for each g ∈ G and

(ii) for all g ∈ G, 〈in≺(g′)|g′ ∈ G \ {g}〉 does not contain
any monomial term of g.

The following theorem relates the reduced Gröbner basis of
an ideal to the condition −1 ∈ 〈P〉.

Theorem A.1: Let P ⊆ Q[z]. Let G be the reduced
Gröbner basis of 〈P〉. We have that −1 ∈ 〈P〉 if and only
if G = {1}.

Proof: See e.g. [11], [28].
Theorem A.1 is convenient for computational purposes since
by computing the reduced Gröbner basis of an ideal and then
invoking Theorems A.1 and 2.1 we can immediately see if
the associated set of polynomial equations has a solution.

B. Stability of Example 3

To show that (14) has a unique equilibrium point in R2
≥0

we note that all solutions of 0 = f(x;k) are given by

x∗2 =
−(k1−k3+

k2k4
k5

)±
√

(k1−k3+
k2k4
k5

)2+4(k4+k6)
k2k4
k5

2(k4+k6) ,

x∗1 =
k1+k6x

∗
2

k2+k5x∗2
,

of which exactly one solution (x∗1, x
∗
2) is nonnegative. To see

that (x∗1, x
∗
2) is globally asymptotically stable, observe that

R2
≥0 is positively invariant and let W (x) = x1 +(1+ k6

k4
)x2.

We have Ẇ (x) ≤ k1+(1+ k6
k4

)k3−k2x1−k4x2, and so there
exists C > 0 such that for all x ∈ R2

≥0 such that W (x) ≥ C,
Ẇ (x) < 0, and thus all trajectories eventually enter W =
{x ∈ R2

≥0|W (x) ≤ C} and stay there. Furthermore, ∂ẋ1

∂x1
+

∂ẋ2

∂x2
< 0 for all x ∈ R2

≥0, and thus by Dulac’s Criterion [16]
there are no periodic orbits in W . The Poincaré-Bendixson
Theorem then implies that x∗ is globally attracting. It can be
verified that ∂f(x;k)

∂x

∣∣∣
x=x∗

is Hurwitz [16]. We conclude that

x∗ is globally asymptotically stable with respect to x ∈ R2
≥0.
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